Vector bundles over (8k+ 3)-dimensional manifolds

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Notes on homogeneous vector bundles over complex flag manifolds

Let P be a parabolic subgroup of a semisimple complex Lie group G defined by a subset Σ of simple roots of G, and let Eφ be a homogeneous vector bundle over the flag manifold G/P corresponding to a linear representation φ of P . Using Bott’s theorem, we obtain sufficient conditions on φ in terms of the combinatorial structure of Σ for some cohomology groups of the sheaf of holomorphic sections ...

متن کامل

Vector Bundles on Sasakian Manifolds

We investigate the analog of holomorphic vector bundles in the context of Sasakian manifolds.

متن کامل

Circle bundles over 4-manifolds

Every 1-connected topological 4-manifold M admits a S1-covering by #r−1S 2 × S3, where r =rankH2(M ; Z). 2000 Mathematical Subject Classification: 57M50(55R25)

متن کامل

Principal Bundles over Statistical Manifolds

In this paper, we introduce the concept of principal bundles on statistical manifolds. After necessary preliminaries on information geometry and principal bundles on manifolds, we study the α-structure of frame bundles over statistical manifolds with respect to α-connections, by giving geometric structures. The manifold of one-dimensional normal distributions appears in the end as an applicatio...

متن کامل

Involutory Hopf Group-coalgebras and Flat Bundles over 3-manifolds

Given a group π, we use involutary Hopf π-coalgebras to define a scalar invariant of flat π-bundles over 3-manifolds. When π = 1, this invariant equals to the one of 3-manifolds constructed by Kuperberg from involutary Hopf algebras. We give examples which show that this invariant is not trivial.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Pacific Journal of Mathematics

سال: 1986

ISSN: 0030-8730,0030-8730

DOI: 10.2140/pjm.1986.121.427